Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

نویسندگان

  • Andrés Bustillo
  • Luis Norberto López de Lacalle
  • Asier Fernández-Valdivielso
  • Pedro Santos
چکیده

An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem. & 2016 Society of CAD/CAM Engineers. Publishing Servies by Elsevier. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WEAR RATE PREDICTION OF GRINDING MEDIA USING BPNN AND MLR MODELS IN GRINDING OF SULPHIDE ORES

Nowadays steel balls wear is a major problem in mineral processing industries and forms a significant part of the grinding cost. Different factors are effective on balls wear. It is needed to find models which are capable to estimate wear rate from these factors. In this paper a back propagation neural network (BPNN) and multiple linear regression (MLR) method have been used to predict wear rat...

متن کامل

Investigation of the Slipping Wear based on the Rate of Entropy Generation

Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...

متن کامل

Investigation of the Slipping Wear based on the Rate of Entropy Generation

Wear is a complicated phenomenon caused by the relative movement of two contacting surfaces compressed together by a normal force. Prediction of the wear, in most cases, requires various experiments and microstructural characterization of the contacting surfaces. Mathematical models based on physical concepts could provide considerable help in understanding the physical behavior and hence the p...

متن کامل

A Numerical Investigation of TBM Disc Cutter Life Prediction in Hard Rocks

There is a direct relationship between the efficiency of mechanized excavation in hard rocks and that of disc cutters. Disc cutter wear is an important effective factor involved in the functionality of tunnel boring machines. Replacement of disc cutters is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate, and has a major effect on the total...

متن کامل

Modeling of Corrosion-Fatigue Crack Growth Rate Based on Least Square Support Vector Machine Technique

Understanding crack growth behavior in engineering components subjected to cyclic fatigue loadings is necessary for design and maintenance purpose. Fatigue crack growth (FCG) rate strongly depends on the applied loading characteristics in a nonlinear manner, and when the mechanical loadings combine with environmental attacks, this dependency will be more complicated. Since, the experimental inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Computational Design and Engineering

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016